INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 186 SF/23

Date: 22 of September 2023

page (pages)

1(3)

Determination of installed thermal resistance into a roof and into a wall of ATI COMBI PRO LIN according to EN ISO 6946:2017

ATT COMBI PRO LIN according to EN ISO 6946:2017			
	(test name)		
Test method:	Determination of installed thermal resistance into a roof and into a wall according to EN ISO 6946:2017		
	(number of normative document or test method, description of test procedure, test uncertainty)		
Product name:	ATI COMBI PRO LIN		
	(identification of the specimen)		
Customer:	SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France		
	(name and address of enterprise)		
Manufacturer:	SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France		

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, R, (m ² ·K)/W
Flat roof ($\alpha = 0^{\circ}$)		7.01
Pitched roof ($\alpha = 30^{\circ}$)	EN ISO 6946:2017	7,11
Pitched roof ($\alpha = 45^{\circ}$)		7,17
Wall ($\alpha = 90^{\circ}$)		7.40

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

made by:

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

University of Technology

(Name of the organization)

Products used in calculation:

Ventilated air layer (external surface resistance R_{se}).

Multilayer reflective insulation product ATI PRO LIN-3 (test report no. 138 SF/23 U).

Emissivity of ATI PRO LIN-3 upper surface $\varepsilon = 0.85^*$; lower surface $\varepsilon = 0.15^*$;

Unventilated air layer 20 mm;

Multilayer reflective insulation product **ATI PRO PREMIUM** (test report no. 106 SF/23 U). Emissivity of ATI PRO PREMIUM upper surface $\varepsilon = 0.10^*$; lower surface $\varepsilon = 0.10^*$;

Unventilated air layer 20 mm.
* Declared by the manufacturer

Additional information:

Application, 2023-09-20

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory: Calculated by Cokumental (signature)

Calculated by Calculation made by)

S.P.

S.P.

Respublika K. Banionis
(n., surname)

(signature)

(signature)

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W		
ATI PRO LIN-3 (test report n° 138 SF/23 U)	$R_{core90/90} = 2.54$		
ATI PRO PREMIUM (test report n°. 106 SF/23 U)	$R_{\text{core}90/90} = 3.52$		
"Rcore90/90" is the declared R core value following EN 16012 + A1.			
"Rcore90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following			
EN $16012 + AI$ (and using the fractile 90/90 calculati			

Temperature regime 20°C / 0°C			
1.	Unventilated Air cavity #1, 20 mm		
2.	ATI PRO PREMIUM		
3.	Unventilated Air cavity #2, 20 mm		
4.	ATI PRO LIN-3		
5.	Ventilated Air cavity #3, 20 mm		

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

ATI COMBI PRO LIN installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
	Unventilated Air cavity # 1	0.3983	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.4402	m²·K/W
Ascendant Heat Flux	ATI PRO LIN-3	2.54	m²·K/W
(Winter period)	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1119	m²·K/W
	surface R_{se})		
	R Total	7.01	m2·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

ATI COMBI PRO LIN installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
	Unventilated Air cavity # 1	0.4391	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.4905	m²·K/W
Ascendant Heat Flux	ATI PRO LIN-3	2.54	m²·K/W
(Winter period)	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1229	m²·K/W
	surface R_{se})		
	R Total	7.11	m²·K/W

Table 2: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI COMBI PRO LIN installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux	Unventilated Air cavity # 1	0.4628	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.5203	m²·K/W
	ATI PRO LIN-3	2.54	m²·K/W
(Winter period)	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1293	m²·K/W
	surface R_{se})		
	R Total	7.17	m ² ·K/W

Table 3: Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN ISO 6946)

ATI COMBI PRO LIN installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux	Unventilated Air cavity # 1	0.5522	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.6362	m²·K/W
	ATI PRO LIN-3	2.54	m²·K/W
(Winter period)	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1554	m²·K/W
	surface R_{se})		
	R Total	7.40	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 0° to 90°).
- Calculations of R values are valid when ATI PRO is installed in agreement with the installation guidelines described into the manufacturer brochure.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.